今から x 年前の人口は (1000億 / x) 人

世界の人口がどう変化してきたかを検索してみると、びっくり。
なんとなく人口は指数関数的に増えてきたものだと思い込んでいたのですが、
そうではないようです。
人口は以下のように推定されています。

400万~20万年前 12万5千人
20万~4万年前 100~120万人
旧石器時代 - Wikipedia

1万年前 100万~1000万人
1000年前 約3億人
100年前 約16億人
World population estimates - Wikipedia, the free encyclopedia

非常におおざっぱにまとめると、こうです。

100万年前 10万人
10万年前 100万人
1万年前 1000万人
1000年前 1億人
100年前 10億人

人口が10倍になるのにかかる時間がどんどん短くなっているので、
指数関数よりもはるかに速く増大しています。
式で書くと、

今から x 年前の人口 = (1000億 / x) 人

となります。
この式の特異点は「現在」で、人口が無限大になります(笑)。
もちろんそんなことは起きませんが、
それでも100万年前から100年前までの広い範囲で
だいたい成り立っている近似式なので、覚えておいて損はないかも。

なんでこういう増加曲線になるのか不思議です。
技術の進歩速度や農地の開拓速度自体が加速して、
食料供給量が指数関数よりも速く増加するということは
定性的には納得できるのですが、定量的な説明は思いつきません。
結局「単なる偶然」ということだと思いますが、不思議です。

ちなみに国連の予測によると、今後増加速度はにぶるものの、
まだしばらくは人口は増えます。
しかし少子高齢化は世界的な傾向であり、労働力不足が懸念されています。
2100年の世界人口は112億人、国連予測 | ナショナルジオグラフィック日本版サイト

コメント

コメントの投稿

トラックバック


この記事にトラックバックする(FC2ブログユーザー)